• Photography
    • Landscape
    • Building
    • Flowers
    • Portrait
    • Snapshot
    • Kids
    • Animals
  • Travel
    • China 中国
      • Beijing 北京
      • Tibet 西藏
      • Guangdong 广东
      • Mongolia 蒙古
      • Jiangxi 江西
      • Hebei 河北
      • Henan 河南
      • Tianjin 天津
      • Taiwan 台湾
      • Liaoning 辽宁
    • United Arab Emirates 阿聯酋
      • Dubai 迪拜
      • Abu Dhabi 阿布扎比
    • South America 南美
      • Peru 秘鲁
      • Bolivia 玻利维亚
    • South Korea 南韩
    • Malaysia 马来西亚
      • Kuala Lumpur 吉隆坡
  • Hiking
  • Food
  • Blog
    • Machine Learning
    • Life in BJ
    • Free Talk
    • Movie
  • About Me
  • Links
Saturday, January 16, 2021
  • Login
Billy's HOME 比利强
  • Photography
    • All
    • Animals
    • Building
    • Flowers
    • Kids
    • Landscape
    • Portrait
    • Snapshot
    • Star
    2020-11-24 深圳 蛇口 海上世界

    2020-11-24 深圳 蛇口 海上世界

    2020-11-08 首钢园+新首钢桥

    2020-11-08 首钢园+新首钢桥

    2020-11-08 颐和园

    2020-11-08 颐和园

    2020-11-01 地坛公园 – 银杏

    2020-11-01 地坛公园 – 银杏

    2020-09-19 故宫博物馆 The Palace Museum

    2020-09-12 故宫角楼日出

    2020-09-12 故宫角楼日出

    2020-09-01 北京雨后阳光

    2020-09-01 北京雨后阳光

    2020-08-09 北海公园 闪电 Flash

    2020-08-08 雍和宫

    • Landscape
    • Building
    • Flowers
    • Portrait
    • Snapshot
    • Kids
    • Animals
  • Travel
    • All
    • China 中国
    • Malaysia 马来西亚
    • South America 南美
    • South Korea 南韩
    • United Arab Emirates 阿聯酋
    【11月19日-12月27日】万代高达基地 深圳快闪店

    【11月19日-12月27日】万代高达基地 深圳快闪店

    2020-11-24 深圳 蛇口 海上世界

    2020-11-24 深圳 蛇口 海上世界

    2020-11-08 首钢园+新首钢桥

    2020-11-08 首钢园+新首钢桥

    2020-11-08 颐和园

    2020-11-08 颐和园

    2020-11-01 地坛公园 – 银杏

    2020-11-01 地坛公园 – 银杏

    2020-10-24 盘锦

    2020-10-24 盘锦

    2020-09-19 故宫博物馆 The Palace Museum

    2020-09-12 故宫角楼日出

    2020-09-12 故宫角楼日出

    2020-09-01 北京雨后阳光

    2020-09-01 北京雨后阳光

    • China 中国
      • Beijing 北京
      • Tibet 西藏
      • Guangdong 广东
      • Mongolia 蒙古
      • Jiangxi 江西
      • Hebei 河北
      • Henan 河南
      • Tianjin 天津
      • Taiwan 台湾
      • Liaoning 辽宁
    • United Arab Emirates 阿聯酋
      • Dubai 迪拜
      • Abu Dhabi 阿布扎比
    • South America 南美
      • Peru 秘鲁
      • Bolivia 玻利维亚
    • South Korea 南韩
    • Malaysia 马来西亚
      • Kuala Lumpur 吉隆坡
  • Hiking
    2020-07-01 鬼笑石

    2020-07-01 鬼笑石

    2020-04-18 北京黑龙潭

    2020-04-18 北京黑龙潭

    香港大学 -> 龙虎山郊野公园 -> 太平山顶

    香港大学 -> 龙虎山郊野公园 -> 太平山顶

    北京昌平长峪城 – 望幽谷民宿

    北京昌平长峪城 – 望幽谷民宿

    济州岛 - 第三天 Jeju – Third Day 2019-09-29

    济州岛 - 第三天 Jeju – Third Day 2019-09-29

    HKUST Alumni 北京响水湖长城风景区

    香港大學 HKU -> 香港仔郊野公園

    香港大學 HKU -> 香港仔郊野公園

    下雨天再戰 “城門水塘 -> 鉛礦凹 -> 大埔”

    下雨天再戰 “城門水塘 -> 鉛礦凹 -> 大埔”

    坪洲一日遊

    坪洲一日遊

  • Food
    老妈牛腩

    老妈牛腩

    北门张家羊肉粉

    北门张家羊肉粉

    全牛道乐山跷脚牛肉(西单店)

    全牛道乐山跷脚牛肉(西单店)

    座银 Zagin soba

    座银 Zagin soba

    豬潤湯麵 – 維記咖啡粉麵

    豬潤湯麵 – 維記咖啡粉麵

    有誠意的芝士撈丁…

    有誠意的芝士撈丁…

    霸王山莊 – 灣仔分店

    霸王山莊 – 灣仔分店

    食盡”九記牛腩”… ^__^

    食盡”九記牛腩”… ^__^

    Burger Joint – 香芒羊肉堡

    Burger Joint – 香芒羊肉堡

  • Blog
    • All
    • Free Talk
    • Life in BJ
    • Machine Learning
    • Movie
    麦路人

    麦路人

    急先锋

    茶餐廳術語,你地又知道幾多呢??

    茶餐廳術語,你地又知道幾多呢??

    男人和女人的必備條件……..

    男人和女人的必備條件……..

    有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

    有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

    整死蟑螂27大絕招!!~

    整死蟑螂27大絕招!!~

    最倒霉的32件事 〔超爆笑〕

    最倒霉的32件事 〔超爆笑〕

    15句讓女生愛你一生的情話

    15句讓女生愛你一生的情話

    野外迷路五招辨南北

    野外迷路五招辨南北

    • Machine Learning
    • Life in BJ
    • Free Talk
    • Movie
  • About Me
  • Links
No Result
View All Result
Billy's HOME 比利强
  • Photography
    • All
    • Animals
    • Building
    • Flowers
    • Kids
    • Landscape
    • Portrait
    • Snapshot
    • Star
    2020-11-24 深圳 蛇口 海上世界

    2020-11-24 深圳 蛇口 海上世界

    2020-11-08 首钢园+新首钢桥

    2020-11-08 首钢园+新首钢桥

    2020-11-08 颐和园

    2020-11-08 颐和园

    2020-11-01 地坛公园 – 银杏

    2020-11-01 地坛公园 – 银杏

    2020-09-19 故宫博物馆 The Palace Museum

    2020-09-12 故宫角楼日出

    2020-09-12 故宫角楼日出

    2020-09-01 北京雨后阳光

    2020-09-01 北京雨后阳光

    2020-08-09 北海公园 闪电 Flash

    2020-08-08 雍和宫

    • Landscape
    • Building
    • Flowers
    • Portrait
    • Snapshot
    • Kids
    • Animals
  • Travel
    • All
    • China 中国
    • Malaysia 马来西亚
    • South America 南美
    • South Korea 南韩
    • United Arab Emirates 阿聯酋
    【11月19日-12月27日】万代高达基地 深圳快闪店

    【11月19日-12月27日】万代高达基地 深圳快闪店

    2020-11-24 深圳 蛇口 海上世界

    2020-11-24 深圳 蛇口 海上世界

    2020-11-08 首钢园+新首钢桥

    2020-11-08 首钢园+新首钢桥

    2020-11-08 颐和园

    2020-11-08 颐和园

    2020-11-01 地坛公园 – 银杏

    2020-11-01 地坛公园 – 银杏

    2020-10-24 盘锦

    2020-10-24 盘锦

    2020-09-19 故宫博物馆 The Palace Museum

    2020-09-12 故宫角楼日出

    2020-09-12 故宫角楼日出

    2020-09-01 北京雨后阳光

    2020-09-01 北京雨后阳光

    • China 中国
      • Beijing 北京
      • Tibet 西藏
      • Guangdong 广东
      • Mongolia 蒙古
      • Jiangxi 江西
      • Hebei 河北
      • Henan 河南
      • Tianjin 天津
      • Taiwan 台湾
      • Liaoning 辽宁
    • United Arab Emirates 阿聯酋
      • Dubai 迪拜
      • Abu Dhabi 阿布扎比
    • South America 南美
      • Peru 秘鲁
      • Bolivia 玻利维亚
    • South Korea 南韩
    • Malaysia 马来西亚
      • Kuala Lumpur 吉隆坡
  • Hiking
    2020-07-01 鬼笑石

    2020-07-01 鬼笑石

    2020-04-18 北京黑龙潭

    2020-04-18 北京黑龙潭

    香港大学 -> 龙虎山郊野公园 -> 太平山顶

    香港大学 -> 龙虎山郊野公园 -> 太平山顶

    北京昌平长峪城 – 望幽谷民宿

    北京昌平长峪城 – 望幽谷民宿

    济州岛 - 第三天 Jeju – Third Day 2019-09-29

    济州岛 - 第三天 Jeju – Third Day 2019-09-29

    HKUST Alumni 北京响水湖长城风景区

    香港大學 HKU -> 香港仔郊野公園

    香港大學 HKU -> 香港仔郊野公園

    下雨天再戰 “城門水塘 -> 鉛礦凹 -> 大埔”

    下雨天再戰 “城門水塘 -> 鉛礦凹 -> 大埔”

    坪洲一日遊

    坪洲一日遊

  • Food
    老妈牛腩

    老妈牛腩

    北门张家羊肉粉

    北门张家羊肉粉

    全牛道乐山跷脚牛肉(西单店)

    全牛道乐山跷脚牛肉(西单店)

    座银 Zagin soba

    座银 Zagin soba

    豬潤湯麵 – 維記咖啡粉麵

    豬潤湯麵 – 維記咖啡粉麵

    有誠意的芝士撈丁…

    有誠意的芝士撈丁…

    霸王山莊 – 灣仔分店

    霸王山莊 – 灣仔分店

    食盡”九記牛腩”… ^__^

    食盡”九記牛腩”… ^__^

    Burger Joint – 香芒羊肉堡

    Burger Joint – 香芒羊肉堡

  • Blog
    • All
    • Free Talk
    • Life in BJ
    • Machine Learning
    • Movie
    麦路人

    麦路人

    急先锋

    茶餐廳術語,你地又知道幾多呢??

    茶餐廳術語,你地又知道幾多呢??

    男人和女人的必備條件……..

    男人和女人的必備條件……..

    有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

    有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

    整死蟑螂27大絕招!!~

    整死蟑螂27大絕招!!~

    最倒霉的32件事 〔超爆笑〕

    最倒霉的32件事 〔超爆笑〕

    15句讓女生愛你一生的情話

    15句讓女生愛你一生的情話

    野外迷路五招辨南北

    野外迷路五招辨南北

    • Machine Learning
    • Life in BJ
    • Free Talk
    • Movie
  • About Me
  • Links
No Result
View All Result
Billy's HOME 比利强
No Result
View All Result

The magic behind the hype: Machine Learning Algorithm

December 8, 2019
in Blog, Machine Learning
0
The magic behind the hype: Machine Learning Algorithm

Understanding the first component of Machine Learning Models

To enable your business processes with Machine Learning, you must consider both the data and the model. We’ve already discussed data extensively — in my last article on “data collection and feature extraction for Machine Learning”. That means, so far, we covered:

  • Basic concepts and terminology related to data collection;
  • Preparing and collecting data;
  • Identifying and extracting features.

In this article, I will discuss the Machine Learning Model, which involves two components: ML Algorithm and ML Training. After a quick glance at their definitions, I’ll focus on Machine Learning Algorithms. Training will be the topic of my next post.

Algorithms and Types of Machine Learning

There are several ways to approach Machine Learning Models. In this section, I’ll talk about how the algorithms correspond to the different types of Machine Learning; i.e., Supervised, Unsupervised, and Reinforcement Learning.

Supervised Learning

Supervised Learning means that the machine learns from a set of “labeled” or “tagged” training data with corresponding outputs. We can think of this in a simpler way, using f(x) = y. In this function, f is the machine learning model, x is the input data, and y is the output data.

There are three common methods of Supervised Learning: Binary Classification, Multiclass Classification, and Regression. Let’s discuss and look at some examples of each one.

1. Binary Classification

Binary Classification, a basic and common method, simply uses two categories: “Positive or Negative”, “0 or 1”, “Yes or No”, “Good or Bad”.

It can be applied broadly to many real-life scenarios. For example, when an email comes in, a binary classification system will analyze the email’s content and categorize it into “Spam” or “Non-spam”.

Some common binary algorithms are:

  • Logistic Regression
  • Decision Tree.
Logistic Regression: Any point above the threshold is “Yes”; any point below is “No”

2. Multiclass Classification

Multiclass Classification sorts the input data into different categories, making it quite similar to Binary Classification. However, as the name implies, Multiclass Classification provides more than two categories.

Let’s say we train the system to identify fruits, such as oranges, apples, bananas, and lemons. Then, when you randomly input a fruit photo to the system, it will tell you the correct fruit name.

Some common multiclass algorithms are:

  • K-Nearest Neighbors
  • Naive Bayes
  • Neural Networks
  • Support Vector Machines.
K-Nearest Neighbors: Classifies the training data into different categories.

3. Regression

Regression predicts a continuous value based on the input data. The difference between Regression and Multiclass Classification is that Regression returns a “value” or “number” where Multiclass Classification returns a “category” or “class”.

As an example, a regression can be used in the financial sector. If you provide historical stock prices to train an algorithm, it can be used to predict future stock prices on any given date.

Some common algorithms are:

  • Linear Regression
  • Lasso Regression.
Linear Regression: By plotting data points, the algorithm can predict a trend.

Unsupervised Learning

Unsupervised Learning is the opposite of Supervised Learning. Even if you don’t provide a set of “labeled” or “tagged” training data, the machine will still help you to discover the unknown patterns within.

Clustering Algorithms

Clustering algorithms are used in Unsupervised Learning to classify data into different groups.

Several common clustering algorithms are:

  • K-means,
  • Hierarchical,
  • Mean-Shift,
  • Density-Based Spatial Clustering of Applications with Noise (DBSCAN).

Many e-commerce companies use Unsupervised Learning for item recommendation. For example, an e-commerce company might use Unsupervised Learning to classify a user segment, and, according to the segment, the system will push specific items to them to increase the purchase conversion rate.

Reinforcement Learning

Reinforcement Learning, often referred to simply as RL, is a relatively new method of Machine Learning.

It started in 1997, when IBM’s supercomputer, Deep Blue, beat Garry Kasparov in chess. It was the first computer ever to beat a world champion and a stunning debut for Reinforcement Learning — which is how Deep Blue learned chess.

RL differs from other types of learning in that it provides an initial state. The ML agent can then select from a number of actions and move to different states, receiving positive or negative rewards for each. Through this process, it teaches itself the best policy to maximize rewards over time.

It can be applied to self-driving cars in the automotive industry.

Deep Blue playing against Garry Kasparov, 1997

There are two common approaches to Reinforcement Learning: Model-Based and Model-Free.

The Model-Based approach uses planning to decide what action to take; conversely, the Model-Free doesn’t like planning ahead an instead uses “trial-and-error”.

RL is a fairly new area of Machine Learning and too complicated to cover in detail here. However, a colleague of mine is publishing an extensive series on Reinforcement Learning, which you can start following here.

In Conclusion

You’ve learned some basic information about the Machine Learning Algorithms used in Supervised, Unsupervised and Reinforcement Learning.

You should also have an idea about how they can be applied in practical situations.

In my next article, I will elaborate on ML Training to round off our discussion of Machine Learning Models.

Thank you for reading! Follow me here and on social media to make sure you don’t miss the next installment. If you found this article useful, a share and some claps would mean the world to me and help fuel the rest of my series.

Questions or comments? I’d be more than happy to answer them here or via email.

You can also find me on LinkedIn, Facebook, Instagram, and my personal website.

共享 Share this:

  • Facebook
  • Twitter
  • LinkedIn
  • Reddit
  • WhatsApp
  • Skype
  • Tumblr
  • Pinterest
  • Email

Like this:

Like Loading...

Related

Previous Post

勇敢者游戏2:再战巅峰 Jumanji: The Next Level

Next Post

误杀 - 影评

Related Posts

麦路人
Blog

麦路人

November 4, 2020
Blog

急先锋

October 9, 2020
茶餐廳術語,你地又知道幾多呢??
Blog

茶餐廳術語,你地又知道幾多呢??

July 11, 2020
男人和女人的必備條件……..
Blog

男人和女人的必備條件……..

July 11, 2020
有女友及家室人士注意:10 句女人最憎的說話~~超準~~~
Blog

有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

July 11, 2020
整死蟑螂27大絕招!!~
Blog

整死蟑螂27大絕招!!~

July 11, 2020
Next Post
误杀 - 影评

误杀 - 影评

Leave a Reply Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

  • Trending
  • Comments
  • Latest
随拍 – 朝阳公园 – Snapshot in Sun (Chaoyang) Park

随拍 – 朝阳公园 – Snapshot in Sun (Chaoyang) Park

July 21, 2020
日出-中国国家天文台内蒙古明安图观测站 Sunrise – China National Observatory Inner Mongolia Ming An Tu Observation Station

日出-中国国家天文台内蒙古明安图观测站 Sunrise – China National Observatory Inner Mongolia Ming An Tu Observation Station

July 21, 2020

夜拍景山公园

May 30, 2018
晚霞-中国国家天文台内蒙古明安图观测站 Sunset – China National Observatory Inner Mongolia Ming An Tu Observation Station

晚霞-中国国家天文台内蒙古明安图观测站 Sunset – China National Observatory Inner Mongolia Ming An Tu Observation Station

July 21, 2020
济州岛 - 第三天 Jeju – Third Day 2019-09-29

济州岛 - 第三天 Jeju – Third Day 2019-09-29

1

2020-07-25 Red Brick Art Museum 红砖美术馆

1

2020-08-02 华熙LIVE(五棵松店)

1

Cathy @ Tai Po

0
【11月19日-12月27日】万代高达基地 深圳快闪店

【11月19日-12月27日】万代高达基地 深圳快闪店

December 17, 2020
2020-11-24 深圳 蛇口 海上世界

2020-11-24 深圳 蛇口 海上世界

November 24, 2020
2020-11-08 首钢园+新首钢桥

2020-11-08 首钢园+新首钢桥

November 9, 2020
2020-11-08 颐和园

2020-11-08 颐和园

November 9, 2020

Popular Stories

  • 随拍 – 朝阳公园 – Snapshot in Sun (Chaoyang) Park

    随拍 – 朝阳公园 – Snapshot in Sun (Chaoyang) Park

    0 shares
    Share 0 Tweet 0
  • 日出-中国国家天文台内蒙古明安图观测站 Sunrise – China National Observatory Inner Mongolia Ming An Tu Observation Station

    0 shares
    Share 0 Tweet 0
  • 夜拍景山公园

    0 shares
    Share 0 Tweet 0
  • 晚霞-中国国家天文台内蒙古明安图观测站 Sunset – China National Observatory Inner Mongolia Ming An Tu Observation Station

    0 shares
    Share 0 Tweet 0
  • 2018-09-16 晚霞-故宮 Sunset – Imperial Palace

    0 shares
    Share 0 Tweet 0

Follow Us

Browse by Category

  • Abu Dhabi 阿布扎比
  • Animals
  • Beijing 北京
  • Blog
  • Bolivia 玻利维亚
  • Building
  • China 中国
  • Dubai 迪拜
  • Flowers
  • Food
  • Free Talk
  • Guangdong 广东
  • Hebei 河北
  • Henan 河南
  • Hiking
  • Hong Kong 香港
  • Jiangxi 江西
  • Kids
  • Kuala Lumpur 吉隆坡
  • Landscape
  • Liaoning 辽宁
  • Life in BJ
  • Machine Learning
  • Malaysia 马来西亚
  • Mongolia 蒙古
  • Movie
  • Peru 秘鲁
  • Photography
  • Portrait
  • Snapshot
  • South America 南美
  • South Korea 南韩
  • Star
  • Taiwan 台湾
  • Tianjin 天津
  • Tibet 西藏
  • Travel
  • United Arab Emirates 阿聯酋

Recent News

【11月19日-12月27日】万代高达基地 深圳快闪店

【11月19日-12月27日】万代高达基地 深圳快闪店

December 17, 2020
2020-11-24 深圳 蛇口 海上世界

2020-11-24 深圳 蛇口 海上世界

November 24, 2020
2020-11-08 首钢园+新首钢桥

2020-11-08 首钢园+新首钢桥

November 9, 2020
2020-11-08 颐和园

2020-11-08 颐和园

November 9, 2020
  • Photography
  • Travel
  • Hiking
  • Food
  • Blog
  • About Me
  • Links

© 2019 Billy Tang.

No Result
View All Result
  • Photography
    • Landscape
    • Building
    • Flowers
    • Portrait
    • Snapshot
    • Kids
    • Animals
  • Travel
    • China 中国
      • Beijing 北京
      • Tibet 西藏
      • Guangdong 广东
      • Mongolia 蒙古
      • Jiangxi 江西
      • Hebei 河北
      • Henan 河南
      • Tianjin 天津
      • Taiwan 台湾
      • Liaoning 辽宁
    • United Arab Emirates 阿聯酋
      • Dubai 迪拜
      • Abu Dhabi 阿布扎比
    • South America 南美
      • Peru 秘鲁
      • Bolivia 玻利维亚
    • South Korea 南韩
    • Malaysia 马来西亚
      • Kuala Lumpur 吉隆坡
  • Hiking
  • Food
  • Blog
    • Machine Learning
    • Life in BJ
    • Free Talk
    • Movie
  • About Me
  • Links

© 2019 Billy Tang.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
%d bloggers like this:
    We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkNoPrivacy policy