• Photography
    • Landscape
    • Building
    • Flowers
    • Portrait
    • Snapshot
    • Kids
    • Animals
  • Travel
    • China 中国
      • Beijing 北京
      • Tibet 西藏
      • Guangdong 广东
      • Mongolia 蒙古
      • Jiangxi 江西
      • Hebei 河北
      • Henan 河南
      • Tianjin 天津
      • Taiwan 台湾
      • Liaoning 辽宁
    • United Arab Emirates 阿聯酋
      • Dubai 迪拜
      • Abu Dhabi 阿布扎比
    • South America 南美
      • Peru 秘鲁
      • Bolivia 玻利维亚
    • South Korea 南韩
    • Malaysia 马来西亚
      • Kuala Lumpur 吉隆坡
  • Hiking
  • Food
  • Blog
    • Machine Learning
    • Life in BJ
    • Free Talk
    • Movie
  • About Me
  • Links
Saturday, January 16, 2021
  • Login
Billy's HOME 比利强
  • Photography
    • All
    • Animals
    • Building
    • Flowers
    • Kids
    • Landscape
    • Portrait
    • Snapshot
    • Star
    2020-11-24 深圳 蛇口 海上世界

    2020-11-24 深圳 蛇口 海上世界

    2020-11-08 首钢园+新首钢桥

    2020-11-08 首钢园+新首钢桥

    2020-11-08 颐和园

    2020-11-08 颐和园

    2020-11-01 地坛公园 – 银杏

    2020-11-01 地坛公园 – 银杏

    2020-09-19 故宫博物馆 The Palace Museum

    2020-09-12 故宫角楼日出

    2020-09-12 故宫角楼日出

    2020-09-01 北京雨后阳光

    2020-09-01 北京雨后阳光

    2020-08-09 北海公园 闪电 Flash

    2020-08-08 雍和宫

    • Landscape
    • Building
    • Flowers
    • Portrait
    • Snapshot
    • Kids
    • Animals
  • Travel
    • All
    • China 中国
    • Malaysia 马来西亚
    • South America 南美
    • South Korea 南韩
    • United Arab Emirates 阿聯酋
    【11月19日-12月27日】万代高达基地 深圳快闪店

    【11月19日-12月27日】万代高达基地 深圳快闪店

    2020-11-24 深圳 蛇口 海上世界

    2020-11-24 深圳 蛇口 海上世界

    2020-11-08 首钢园+新首钢桥

    2020-11-08 首钢园+新首钢桥

    2020-11-08 颐和园

    2020-11-08 颐和园

    2020-11-01 地坛公园 – 银杏

    2020-11-01 地坛公园 – 银杏

    2020-10-24 盘锦

    2020-10-24 盘锦

    2020-09-19 故宫博物馆 The Palace Museum

    2020-09-12 故宫角楼日出

    2020-09-12 故宫角楼日出

    2020-09-01 北京雨后阳光

    2020-09-01 北京雨后阳光

    • China 中国
      • Beijing 北京
      • Tibet 西藏
      • Guangdong 广东
      • Mongolia 蒙古
      • Jiangxi 江西
      • Hebei 河北
      • Henan 河南
      • Tianjin 天津
      • Taiwan 台湾
      • Liaoning 辽宁
    • United Arab Emirates 阿聯酋
      • Dubai 迪拜
      • Abu Dhabi 阿布扎比
    • South America 南美
      • Peru 秘鲁
      • Bolivia 玻利维亚
    • South Korea 南韩
    • Malaysia 马来西亚
      • Kuala Lumpur 吉隆坡
  • Hiking
    2020-07-01 鬼笑石

    2020-07-01 鬼笑石

    2020-04-18 北京黑龙潭

    2020-04-18 北京黑龙潭

    香港大学 -> 龙虎山郊野公园 -> 太平山顶

    香港大学 -> 龙虎山郊野公园 -> 太平山顶

    北京昌平长峪城 – 望幽谷民宿

    北京昌平长峪城 – 望幽谷民宿

    济州岛 - 第三天 Jeju – Third Day 2019-09-29

    济州岛 - 第三天 Jeju – Third Day 2019-09-29

    HKUST Alumni 北京响水湖长城风景区

    香港大學 HKU -> 香港仔郊野公園

    香港大學 HKU -> 香港仔郊野公園

    下雨天再戰 “城門水塘 -> 鉛礦凹 -> 大埔”

    下雨天再戰 “城門水塘 -> 鉛礦凹 -> 大埔”

    坪洲一日遊

    坪洲一日遊

  • Food
    老妈牛腩

    老妈牛腩

    北门张家羊肉粉

    北门张家羊肉粉

    全牛道乐山跷脚牛肉(西单店)

    全牛道乐山跷脚牛肉(西单店)

    座银 Zagin soba

    座银 Zagin soba

    豬潤湯麵 – 維記咖啡粉麵

    豬潤湯麵 – 維記咖啡粉麵

    有誠意的芝士撈丁…

    有誠意的芝士撈丁…

    霸王山莊 – 灣仔分店

    霸王山莊 – 灣仔分店

    食盡”九記牛腩”… ^__^

    食盡”九記牛腩”… ^__^

    Burger Joint – 香芒羊肉堡

    Burger Joint – 香芒羊肉堡

  • Blog
    • All
    • Free Talk
    • Life in BJ
    • Machine Learning
    • Movie
    麦路人

    麦路人

    急先锋

    茶餐廳術語,你地又知道幾多呢??

    茶餐廳術語,你地又知道幾多呢??

    男人和女人的必備條件……..

    男人和女人的必備條件……..

    有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

    有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

    整死蟑螂27大絕招!!~

    整死蟑螂27大絕招!!~

    最倒霉的32件事 〔超爆笑〕

    最倒霉的32件事 〔超爆笑〕

    15句讓女生愛你一生的情話

    15句讓女生愛你一生的情話

    野外迷路五招辨南北

    野外迷路五招辨南北

    • Machine Learning
    • Life in BJ
    • Free Talk
    • Movie
  • About Me
  • Links
No Result
View All Result
Billy's HOME 比利强
  • Photography
    • All
    • Animals
    • Building
    • Flowers
    • Kids
    • Landscape
    • Portrait
    • Snapshot
    • Star
    2020-11-24 深圳 蛇口 海上世界

    2020-11-24 深圳 蛇口 海上世界

    2020-11-08 首钢园+新首钢桥

    2020-11-08 首钢园+新首钢桥

    2020-11-08 颐和园

    2020-11-08 颐和园

    2020-11-01 地坛公园 – 银杏

    2020-11-01 地坛公园 – 银杏

    2020-09-19 故宫博物馆 The Palace Museum

    2020-09-12 故宫角楼日出

    2020-09-12 故宫角楼日出

    2020-09-01 北京雨后阳光

    2020-09-01 北京雨后阳光

    2020-08-09 北海公园 闪电 Flash

    2020-08-08 雍和宫

    • Landscape
    • Building
    • Flowers
    • Portrait
    • Snapshot
    • Kids
    • Animals
  • Travel
    • All
    • China 中国
    • Malaysia 马来西亚
    • South America 南美
    • South Korea 南韩
    • United Arab Emirates 阿聯酋
    【11月19日-12月27日】万代高达基地 深圳快闪店

    【11月19日-12月27日】万代高达基地 深圳快闪店

    2020-11-24 深圳 蛇口 海上世界

    2020-11-24 深圳 蛇口 海上世界

    2020-11-08 首钢园+新首钢桥

    2020-11-08 首钢园+新首钢桥

    2020-11-08 颐和园

    2020-11-08 颐和园

    2020-11-01 地坛公园 – 银杏

    2020-11-01 地坛公园 – 银杏

    2020-10-24 盘锦

    2020-10-24 盘锦

    2020-09-19 故宫博物馆 The Palace Museum

    2020-09-12 故宫角楼日出

    2020-09-12 故宫角楼日出

    2020-09-01 北京雨后阳光

    2020-09-01 北京雨后阳光

    • China 中国
      • Beijing 北京
      • Tibet 西藏
      • Guangdong 广东
      • Mongolia 蒙古
      • Jiangxi 江西
      • Hebei 河北
      • Henan 河南
      • Tianjin 天津
      • Taiwan 台湾
      • Liaoning 辽宁
    • United Arab Emirates 阿聯酋
      • Dubai 迪拜
      • Abu Dhabi 阿布扎比
    • South America 南美
      • Peru 秘鲁
      • Bolivia 玻利维亚
    • South Korea 南韩
    • Malaysia 马来西亚
      • Kuala Lumpur 吉隆坡
  • Hiking
    2020-07-01 鬼笑石

    2020-07-01 鬼笑石

    2020-04-18 北京黑龙潭

    2020-04-18 北京黑龙潭

    香港大学 -> 龙虎山郊野公园 -> 太平山顶

    香港大学 -> 龙虎山郊野公园 -> 太平山顶

    北京昌平长峪城 – 望幽谷民宿

    北京昌平长峪城 – 望幽谷民宿

    济州岛 - 第三天 Jeju – Third Day 2019-09-29

    济州岛 - 第三天 Jeju – Third Day 2019-09-29

    HKUST Alumni 北京响水湖长城风景区

    香港大學 HKU -> 香港仔郊野公園

    香港大學 HKU -> 香港仔郊野公園

    下雨天再戰 “城門水塘 -> 鉛礦凹 -> 大埔”

    下雨天再戰 “城門水塘 -> 鉛礦凹 -> 大埔”

    坪洲一日遊

    坪洲一日遊

  • Food
    老妈牛腩

    老妈牛腩

    北门张家羊肉粉

    北门张家羊肉粉

    全牛道乐山跷脚牛肉(西单店)

    全牛道乐山跷脚牛肉(西单店)

    座银 Zagin soba

    座银 Zagin soba

    豬潤湯麵 – 維記咖啡粉麵

    豬潤湯麵 – 維記咖啡粉麵

    有誠意的芝士撈丁…

    有誠意的芝士撈丁…

    霸王山莊 – 灣仔分店

    霸王山莊 – 灣仔分店

    食盡”九記牛腩”… ^__^

    食盡”九記牛腩”… ^__^

    Burger Joint – 香芒羊肉堡

    Burger Joint – 香芒羊肉堡

  • Blog
    • All
    • Free Talk
    • Life in BJ
    • Machine Learning
    • Movie
    麦路人

    麦路人

    急先锋

    茶餐廳術語,你地又知道幾多呢??

    茶餐廳術語,你地又知道幾多呢??

    男人和女人的必備條件……..

    男人和女人的必備條件……..

    有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

    有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

    整死蟑螂27大絕招!!~

    整死蟑螂27大絕招!!~

    最倒霉的32件事 〔超爆笑〕

    最倒霉的32件事 〔超爆笑〕

    15句讓女生愛你一生的情話

    15句讓女生愛你一生的情話

    野外迷路五招辨南北

    野外迷路五招辨南北

    • Machine Learning
    • Life in BJ
    • Free Talk
    • Movie
  • About Me
  • Links
No Result
View All Result
Billy's HOME 比利强
No Result
View All Result

Identifying Business Processes That Can Be Machine Learning-Enabled

November 6, 2019
in Blog, Machine Learning
0
Identifying Business Processes That Can Be Machine Learning-Enabled

What to look for and expect when analyzing workflows for tasks can be automated with Machine Learning

Welcome to another installment in my series on 6 steps to apply machine learning to your business! Assuming you’re all caught up on the difference between AI and ML, we’re ready to move on to step two: identifying business processes that can be ML-enabled.

In this article, I will help you do exactly that by building an understanding of:

  • The relationship between automation and Machine Learning;
  • The benefits and challenges you can expect from ML integration;
  • Business process mapping and general workflow analysis.

First, let me share a story.

Back when I first joined my company, I noticed we had two people spending three full days to collect product data for the previous week. By the time the product owner reviewed the performance report, it was out-of-date and lacking accuracy due to human error.

Naturally, I thought to myself, Here is something we can automate! So I asked the technical teams about it and they firmly replied: “No.” They did give an explanation: “Our manual process is well-optimized. If there’s a solution we need, it’s adding more people.” (I wonder if you’ve heard this before?)

Being the over-eager newbie, I wasn’t about to give up. So I broke down the workflow and identified specific processes that could be fully automated.

Today, not a single employee works on data collection or report generation. I’m about to explain my process so you can learn how to make this happen in your company.

The Relationship Between Machine Learning And Automation

Before we can use the robot, we must understand it. In this case, the “robot” I’m talking about is just a mental picture. Imagine Automation is its body and Machine Learning its brain.

When applied to a workflow, Automation covers the majority but Machine Learning is the core. It is the “Artificially Intelligent” agent.

Pure automation cannot predict and analyze; we need ML for that. Keep this distinction in mind as we proceed.

How to Know if ML is Right for Your Business

“If you do not change, you can become extinct!”

Spencer Johnson, Who Moved My Cheese?

Change is the law of life. In the corporate world, stagnation and lack of innovation can run you out of business. As technology progresses, customers have come to expect better products. To stay competitive, you must embrace the advances.

Here are a few benefits of Machine Learning automation:

  • Efficiency. Scale up your business while removing tedious processes and minimizing without additional human resources.
  • Accuracy. Reduce human error and careless mistakes.
  • Speed. Data processing will be more accurate and faster.
  • Prediction. For user behavior and preferences.

But just because ML automation is all the rave and comes with some great benefits doesn’t mean you should start blindly integrating it into your business.

Some tasks can benefit from ML and others simply aren’t suited to it. So let’s talk about how to find out which is which.

Business Process Mapping

To begin, you must conduct a thorough review of your business to identify specific tasks and processes that can be automated with Machine Learning.

The best way to do this is by clearly define all of the processes your business undertakes through business process mapping.

Look at each process and outline:

  • How it is carried out;
  • Who is responsible;
  • To what standard the process should be completed;
  • How the success of the process can be determined.

Workflow diagrams can also help you outline the tasks involved in a particular process. Here is an example for Customer Support:

Customer Support Workflow Diagram, Source: Lucidchart

To further break down a specific task, we can often use this general workflow:

Granted, this might seem like a lot of work, but defining all the tasks in a process — and listing the workflow for each one — is exactly how you’ll uncover ML opportunities.

Thus, I highly recommend breaking this down in detail. Once you’ve done so, you can look at each element and ask: Can this be Machine-Learning automated?

Tasks That Can Benefit From ML

Notice the word “manually” in every stage of the general workflow above. This is a simple key to identifying processes that are:

  • Human-intensive: require a lot of people and time.
  • Highly repetitive: require the same task to be performed over and over.
  • Tedious: require manual processing of large amounts of data.

Looking back at our workflow analysis, we can see how all four processes can involve a lot of human resources, repetitive action, and tedious work — exactly what we’re looking for! Workflows like this can be automated and ML-enabled.

Let’s relate this to my story from earlier. Here’s a breakdown of what took the two employees three days:

  1. Collect data manually: From various platforms and channels. (Automation)
  2. Analyze data manually: Look for relevant information. (Machine Learning)
  3. Make decisions manually: Interpret findings and choose what to present. (Machine Learning)
  4. Take action manually: Create a report for the product owner to review. (Automation)

By breaking their workflow down into these stages, I identified that (1) Collect Data and (4) Take Action” could be fully automated and (2) Analyze Data and (3) Make Decisions could be Machine Learning-enabled.

Here are some more guidelines to help you determine whether or not a task is suited for ML:

ML may work well if the task:

  • Needs natural language interaction (e.g. Siri)
  • Calls for a personalized experience (e.g. item recommendation)
  • Analyzes huge amounts of data from different sources (e.g. weather forecast

ML may NOT work well if the task:

  • Involves creative action (e.g. drawing)
  • Requires 100% accuracy; has no allowance for error (e.g. a calculator)
  • Simply doesn’t want to be automated (i.e. you don’t want it to be)

Now let’s wrap this up!

The ABCs of Identifying ML Opportunities

Analysis: Which Of My Processes Can Be Machine Learning-Enabled?

The business process mapping, workflow analysis, and examples discussed above will help you answer this question. But before taking action, you’ve got to consider a few other factors.

Backing: Can I Collect Relevant Data?

Data is key in Machine Learning. Without relevant data to back it up, an ML model can’t learn. Thus, a lack of access to clean, usable data can make a task that is otherwise well-suited to ML unfeasible.

Questions to ask:

  • Where is the data stream?
  • Where is the data stored? (Is it in a third-party API?)
  • How much data can be trained? (More on this in future posts!)
  • How can the data be cleaned and unified?

Challenges: What Integration Issues Should I Consider?

Suppose you’ve identified a business process that’s perfect for ML, and you have all the data needed for the job. Now you have to look at the “external” factors, such as budget, talent, and company structure.

Questions to ask:

  • Do I have the budget to implement a new system structure, considering the cost of specialized labor, hardware, and data storage?
  • How will I measure the return and value of the ML application?
  • Do my employees have the digital skills to work with the technology?
  • How will I compete with giant enterprises and startups to attract top AI talent?
  • How will ML integration change the structure of my company?

In Conclusion

That’s it! You now have a way to identify the processes in your business that can benefit from Machine Learning. Once you determine what is feasible, you’ll be ready to start actually integrating ML into your system.

And that’s exactly what I’m going to help you do next: apply Machine Learning to your business. (Coming soon!)

Follow me here and on social media to make sure you don’t miss the next installment! If you found this article useful, a share and some claps would mean the world to me and help fuel the rest of my series!

Questions or comments? I’d be more than happy to answer them here or via email.

Find me on social: LinkedIn, Facebook, Instagram, and my personal website.

共享 Share this:

  • Facebook
  • Twitter
  • LinkedIn
  • Reddit
  • WhatsApp
  • Skype
  • Tumblr
  • Pinterest
  • Email

Like this:

Like Loading...

Related

Tags: Artificial IntelligenceBusinessMachine Learning
Previous Post

紫竹院公园

Next Post

北京龙潭公园

Related Posts

麦路人
Blog

麦路人

November 4, 2020
Blog

急先锋

October 9, 2020
茶餐廳術語,你地又知道幾多呢??
Blog

茶餐廳術語,你地又知道幾多呢??

July 11, 2020
男人和女人的必備條件……..
Blog

男人和女人的必備條件……..

July 11, 2020
有女友及家室人士注意:10 句女人最憎的說話~~超準~~~
Blog

有女友及家室人士注意:10 句女人最憎的說話~~超準~~~

July 11, 2020
整死蟑螂27大絕招!!~
Blog

整死蟑螂27大絕招!!~

July 11, 2020
Next Post
北京龙潭公园

北京龙潭公园

Leave a Reply Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

  • Trending
  • Comments
  • Latest
随拍 – 朝阳公园 – Snapshot in Sun (Chaoyang) Park

随拍 – 朝阳公园 – Snapshot in Sun (Chaoyang) Park

July 21, 2020
日出-中国国家天文台内蒙古明安图观测站 Sunrise – China National Observatory Inner Mongolia Ming An Tu Observation Station

日出-中国国家天文台内蒙古明安图观测站 Sunrise – China National Observatory Inner Mongolia Ming An Tu Observation Station

July 21, 2020

夜拍景山公园

May 30, 2018
晚霞-中国国家天文台内蒙古明安图观测站 Sunset – China National Observatory Inner Mongolia Ming An Tu Observation Station

晚霞-中国国家天文台内蒙古明安图观测站 Sunset – China National Observatory Inner Mongolia Ming An Tu Observation Station

July 21, 2020
济州岛 - 第三天 Jeju – Third Day 2019-09-29

济州岛 - 第三天 Jeju – Third Day 2019-09-29

1

2020-07-25 Red Brick Art Museum 红砖美术馆

1

2020-08-02 华熙LIVE(五棵松店)

1

Cathy @ Tai Po

0
【11月19日-12月27日】万代高达基地 深圳快闪店

【11月19日-12月27日】万代高达基地 深圳快闪店

December 17, 2020
2020-11-24 深圳 蛇口 海上世界

2020-11-24 深圳 蛇口 海上世界

November 24, 2020
2020-11-08 首钢园+新首钢桥

2020-11-08 首钢园+新首钢桥

November 9, 2020
2020-11-08 颐和园

2020-11-08 颐和园

November 9, 2020

Popular Stories

  • 随拍 – 朝阳公园 – Snapshot in Sun (Chaoyang) Park

    随拍 – 朝阳公园 – Snapshot in Sun (Chaoyang) Park

    0 shares
    Share 0 Tweet 0
  • 日出-中国国家天文台内蒙古明安图观测站 Sunrise – China National Observatory Inner Mongolia Ming An Tu Observation Station

    0 shares
    Share 0 Tweet 0
  • 夜拍景山公园

    0 shares
    Share 0 Tweet 0
  • 晚霞-中国国家天文台内蒙古明安图观测站 Sunset – China National Observatory Inner Mongolia Ming An Tu Observation Station

    0 shares
    Share 0 Tweet 0
  • 2018-09-16 晚霞-故宮 Sunset – Imperial Palace

    0 shares
    Share 0 Tweet 0

Follow Us

Browse by Category

  • Abu Dhabi 阿布扎比
  • Animals
  • Beijing 北京
  • Blog
  • Bolivia 玻利维亚
  • Building
  • China 中国
  • Dubai 迪拜
  • Flowers
  • Food
  • Free Talk
  • Guangdong 广东
  • Hebei 河北
  • Henan 河南
  • Hiking
  • Hong Kong 香港
  • Jiangxi 江西
  • Kids
  • Kuala Lumpur 吉隆坡
  • Landscape
  • Liaoning 辽宁
  • Life in BJ
  • Machine Learning
  • Malaysia 马来西亚
  • Mongolia 蒙古
  • Movie
  • Peru 秘鲁
  • Photography
  • Portrait
  • Snapshot
  • South America 南美
  • South Korea 南韩
  • Star
  • Taiwan 台湾
  • Tianjin 天津
  • Tibet 西藏
  • Travel
  • United Arab Emirates 阿聯酋

Recent News

【11月19日-12月27日】万代高达基地 深圳快闪店

【11月19日-12月27日】万代高达基地 深圳快闪店

December 17, 2020
2020-11-24 深圳 蛇口 海上世界

2020-11-24 深圳 蛇口 海上世界

November 24, 2020
2020-11-08 首钢园+新首钢桥

2020-11-08 首钢园+新首钢桥

November 9, 2020
2020-11-08 颐和园

2020-11-08 颐和园

November 9, 2020
  • Photography
  • Travel
  • Hiking
  • Food
  • Blog
  • About Me
  • Links

© 2019 Billy Tang.

No Result
View All Result
  • Photography
    • Landscape
    • Building
    • Flowers
    • Portrait
    • Snapshot
    • Kids
    • Animals
  • Travel
    • China 中国
      • Beijing 北京
      • Tibet 西藏
      • Guangdong 广东
      • Mongolia 蒙古
      • Jiangxi 江西
      • Hebei 河北
      • Henan 河南
      • Tianjin 天津
      • Taiwan 台湾
      • Liaoning 辽宁
    • United Arab Emirates 阿聯酋
      • Dubai 迪拜
      • Abu Dhabi 阿布扎比
    • South America 南美
      • Peru 秘鲁
      • Bolivia 玻利维亚
    • South Korea 南韩
    • Malaysia 马来西亚
      • Kuala Lumpur 吉隆坡
  • Hiking
  • Food
  • Blog
    • Machine Learning
    • Life in BJ
    • Free Talk
    • Movie
  • About Me
  • Links

© 2019 Billy Tang.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
%d bloggers like this:
    We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkNoPrivacy policy